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S U M M A R Y  
The method of dislocation layers is used to study the stress field of a loaded Griffith-type elastic strip crack in an 
orthotropic crystal. Three fundamental modes of tractions applied to the crack faces are discussed. Formal solutions 
are derived for the stress components and the distribution of stress near a crack tip is deduced, before representative 
numerical results are presented graphically. Finally, the method is applied to the BCS model of elastoplastic cracks. 
In particular, the results are convenient for studying certain orientations of elastic and elastoplastic cracks in hexagonal 
and cubic crystals. 

1. Introduction 

The stress fields created in isotropic, homogeneous, elastic and elastoplastic media by applying 
loads to the surfaces of cracks of Griffith type have been studied quite extensively (see [1], [2-1 
and further references given in these books). A large portion of the literature has been concerned 
with finding either exact or approximate solutions to these problems using integral transform 
techniques and the methods of complex potential function theory. The application of cor- 
responding techniques to crack problems in anisotropic materials is rather cumbersome. 

However, in 1948 Zener [3] and later Friedel [4] pointed out that many straight cracks can 
be represented by continuous distributions of dislocations. Several authors have subsequently 
used this powerful technique and substantial summaries of their work are included in the 
accounts by Bilby and Eshelby [5] and Lardner [6]. Recently, Lardner [7] and Guidera [8] 
have demonstrated that the method is also applicable for solving a large class of boundary 
value problems of classical elasticity, and Tupholme and Lardner [9] have used similar tech- 
niques for discussing moving cracks. The stress field of dislocations in homogeneous aniso- 
tropically elastic solids for a three dimensional state of stress in which the stress is independent 
of one Cartesian coordinate has been developed by Eshelby [10] and Eshelby, Read and 
Shockley [11], and later more fully in a general context by Stroh [12]. 

The purpose of the present paper is to show that the dislocation layer method can be applied 
in a straightforward manner to an investigation of the stress field of particular orientations of 
a loaded straight crack in an orthotropic crystal. Recently, Chou and Sha [13] have stated the 
components of the stress fields for a glide edge dislocation, a climb edge dislocation and a 
screw dislocation in such a material. Their results generalize those given previously by Chou 
[14] for dislocations in a basal plane of a hexagonal crystal and by Chou, Garofalo and 
Whitmore [15] and Chou and Whitmore [16] for a cubic crystal. These expressions provide 
the starting point of the present analysis. 

Whilst this investigation was nearing completion, a paper by Barnett and Asaro [17] 
appeared in which slit-like cracks in arbitrary anisotropic media are studied. However, they 
point out that their analysis is only analytically convenient for predicting general properties 
such as the crack extension forces and the energy of deformation. In contrast, the results 
reported here for an orthotropic crystal are shown to be ideally suited for deriving detailed 
formulae for the stress components and in particular for their angular variation around the 
crack tip for all three modes of loading. 

* On leave from School of Mathematics, University of Bradford, Bradford, England. 
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The content of later sections of this paper is, in brief, as follows. In section 2, the problem is 
formulated by describing the orientation of the crack and the coordinate system with respect 
to the orthotropic crystal and specifying the three fundamental modes (I, II, III) of loading 
which are customarily applied to the crack surface. Ways of particularizing the subsequent 
analyses to hexagonal and cubic crystals are indicated. Sections 3, 4 and 5 are concerned with 
deriving and analyzing the stress fields' components for mode II, mode I and mode III cracks 
respectively. Closed form expressions are first obtained for these components and then ap- 
propriate approximations valid near the crack tip are derived. Representative numerical 
results illustrating and supplementing the analyses are presented and comparable results are 
given for an isotropic material. Elastoplastic cracks are discussed in section 6 using the BCS 
model. 

2. Formulation of the problem 

We consider a plane, stationary, Griffith-type strip crack of width 2c in a homogeneous crystal 
which is orthotropically symmetric in its elastic response. The material is assumed to be initially 
everywhere at rest and stress-free in a natural reference state and situated so that its three 
,mutually perpendicular planes of symmetry are the coordinate planes of a system of rectangular 
Cartesian coordinates x, y, z. 

The crack is assumed to occupy the region - c < x < e, y = 0, - co < z < co of the x-z plane. 
We shall follow the practice, which has become customary in fracture mechanics, of distinguish- 
ing three modes of traction applied to the surfaces of the crack: 

Mode I: a,,(x, O)= T(x), ax,(x, 0)=0 ; 

Mode II: a,,(x, O) = O, axy(x, O) = T(x) ; (1) 

Mode Il l :  %z(x, O)-- T(x), 

where o-xy, axe, ayy, ayz are the components of the stress tensor referred to the coordinates 
x, y, z and T(x) is a prescribed function. The first two modes constitute plane strain deforma- 
tions and the third antiplane strain. 

For an orthotr0pic material, the relation connecting the components of the stress and strain 
tensors ~ and ~, respectively, referred to the x, y, z coordinate system can be written in the form 

til .2,300 ic 2c2 c2 0 o 0 / 
.c.  3o o 0 U .  1 

0- 2 = . 0 0 0 2c44 0 0 (2) 
ax 0 0 0 2css 0 \ e l 3 /  

0 0 0 0 2cos / 

where the cij denote the elastic constants referred to the chosen coordinate system. 
Particularly important classes of orthotropic crystals are hexagonal and cubic crystals. It 

is convenient at this stage to explicitly indicate the substitutions which can be made into the 
expression (2) to reduce the nine elastic constants to the five or three constants, respectively, 
which are appropriate for a hexagonal or cubic crystal. 

Consider a hexagonal crystal placed with the y-axis of our coordinate system directed along 
its six-fold axis of symmetry, so that the x-z plane in which the crack is situated is the basal 
plane. The elastic constants are known to be rotationally invariant with respect to the hexagonal 
axis. It is perhaps worthwhile emphasizing that the orientation of coordinate system relative 
to the hexagonal crystal which is appropriate for the crack analysis is that used by Chou [14] 
and is not the standard system (z-axis parallel to the six-fold axis) for a hexagonal lattice. All 
our subsequent results and analyses for the orthotropic crystal can be reduced to those for a 
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crack in the basal plane of the hexagonal crystal by making the substitutions 

C13 = C12 h , C12 ~ C23 ~ C13 h , C22 -~- C33 h 

Cl l  = C33 ~--- C l l  h ,  C55 = l ( C l l h - - c 1 2 h ) ,  C44 = C66 = C44 h . 

throughout, where the superscript h is used to indicate that the five elastic constants are those 
of a hexagonal crystal referred to the standard coordinate system. 

For a cubic crystal situated with the x, y, z axes coinciding with its three cubic edges the 
substitutions which are needed throughout to make our analyses appropriate for discussing 
the crack in the x - z  plane are 

C13 = C23 : C12 c ~ C22 ~ C33 ~ C l l  c ~ C55 ~- C66 ~ C44 c . 

Our results are also convenient for discussing the crack when the x and y axes are rotated 
relative to the cubic crystal through an angle n/4 about the z-axis. The appropriate substitu- 
tions to make can be deduced from Chou et al. [15, 16]. 

We first discuss a shear crack subjected to mode II surface tractions. 

3. Inplane shear crack 

According to the general procedure of the dislocation layer method, a loaded crack can be 
discussed by replacing it by a continuous planar distribution of dislocations. For this mode II 
shear crack it is appropriate to use stationary straight edge dislocations with line in the 
z-direction and Burgers vector in the x-direction. We assume that a dislocation of this type 
corresponds to a displacement discontinuity given by 

un(x, 0 + ) - u n ( x ,  0 - )  = ( - b ,  0, 0) for x >0  

where b is a constant. The superfix II is attached to the displacement u and the components of 
the stress tensor for this dislocation throughout this section. The stress field of such a dislocation 
situated at the origin has been derived by Chou and Sha [13] and has components given by 

b K e x  x 2 _,~2 y2 
all(x'  Y) = 2~ (xZ-22yZ)2 +d222x2y  2 

" 'x bKe22y {(C+3)xZ+22YZ} 
~rxxt ' Y) = - 2n (x2-22y2)2 +d2 22x2y2 (3) 

n (x, y) -- bKey xZ--22y2 
art 2n (X 2 - -  ,~2 y2)2 + d 2 22 X 2 y2 

where the constants K,,  22, C and d are given in terms of the elastic constants eli by 

g e  = (C12"~C12) -~ C 6 6 ( ~ 1 2 ~ C 1 2  ) __)5- 
tC22 (Cl 2 "~- e l  2 + 2C66)J  

2 z = (c11/c22) ~ , (4) 

c = (e12 + c 1 2 ) ( e 1 2 -  c 1 2 -  2c66) / (e12 c 6 6 ) ,  

a 2 = c + 4  = 

e12= (cllc=)~. 
We see from equation (31) that on y = 0, where the boundary condition (12) must be satisfied, 

II is  given by ff xy 

a ~ y ( x ,  O) --  b K e  1 
2n x" (5) 

If we suppose that the density of the proposed distribution of dislocations on y = 0 is f (x ) ,  
so that the nu.mber of dislocations in the interval (x, x + d x )  is f ( x ) d x  for all Ix[ < e, then, 
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recalling (5), the corresponding stress component at a point on the x-axis is given by 

f axy(X, O) = a n r ( x - x  ', O)f(x')dx'  = bKe f (x ' )  dx' . (6) 
- c  27(, c X - -  X '  

By using the Plemelj formulae and equation (31) to evaluate 

o-x,(x, 0) = lira a L ( x - x ' ,  O)f(x ' )dx ' ,  
y~O --c 

it is clear that the integral in (6) must be interpreted as a Cauchy principal value integral. 
Setting the expression (6) equal to T(x) for fx l<  c, to satisfy the second of the boundary 

conditions (12), yields a singular integral equation for the density function f ( x )  whose general 
solution is well-known [18, 191. We impose the additional restriction that there is no relative 
displacement of the two crack faces at x = _+ c and the appropriate solution for f ( x )  is then found 
to be 

2 1 (c (C2__ X,2)�89 
f ( x )  = 7tbK e (c 2 _ x2) ~ - - c  x ' -  x 

T(x')dx' . (7) 

This expression can now be substituted directly into the formula 

j -c % ( x - x  y ) f ( x ' ) d x "  (8) ai)(x, y) = n ,, 
- - C  

to calculate any of the stress components created by the crack. Equations (3) give the appropri- 
ate expressions for try} and so the resulting integrals clearly all have integrands whose de- 
nominators involve the factor 

D = { ( x -  x") 2 - 2 2 y2}2 q_ d 2 2 2 ( x -  x") 2 y2.  (9) 

This quartic expression can be factorized into the product of quadratic factors in two different 
ways which yield 

D = { (x -x" )E+[d+(d2-4 )~12(2y /2 )2  } { ( x - x " ) 2 + [ d - ( d 2 - 4 ) ~ ] 2 ( Z y / 2 ) 2  } (10) 
and 

o = [ { x -  x" + ( 4 -  d2) 1 (2y/2)} 2 + (d2y/2)21 [ { x -  x " -  ( 4 -  d2) ~ (2y/2)} 2 + (d2y/2y]. (11) 
Recalling from equation ( 4 4 )  that C = d 2 - 4 ,  the factorization (10) is found to be appropriate 

if C > 0  whilst (11) is useful when C <  0. The value of C depends upon the elastic constants of 
the medium, but Chou and Sha [13] and Chou [141 have stated that the inequality C > - 4  
always holds. For convenience and brevity, however, we restrict our discussion in this and the 
following section to materials for which C >0. The corresponding results for C <  0 can be 
derived similarly by straight-forward, but tedious, manipulations using the factorization (11). 
As an illustration, the stress components for the mode II crack are given in Appendix I. 

F o r  d 2 - 4 > 0, the integrals for the aq can be simplified by splitting them into partial fractions 
using the factorization (10) and then making use of the two integrals whose values are stated in 
Appendix II with ~ = [ d +  (d 2 - 4 )  ~] (4/2). These manipulations yield 

= - 4)~]  ~ + (0 +) - [ d -  (d 2 - 4 ) : ]  Y _  ( 0 _ ) } ,  axy(X ' y) �89  2 ~ a~ 

a~x(x, y ) = - 2 {  d ( d z - 3 ) + ( d 2 - 1 ) ( d z - 4 ) { d  + (d 2 - 4) ~ ~ +  (0+ - n/2) 

d(d 2 - 3 ) -  ( d  2 - 1 ) ( d  2 - 4) + y _  (0_ - re/2) (12) 
d -  (d 2 - 4) ~ J 

ayy (x, y) = ~1 {5+ (0+ - r~/2)- ~-_ (0_ -n /2 )}  

where the functions ~-+ (0+) and ~ _  (0_), which arise in section 4 also, are defined by 
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~•  = 

1 c {[d+(d2-e)~](2y/2)cosO++(x-x')sinO+} 
- ~z(d2--4) -~f-c ~ - + _ ' ~ J - - ~ / 2 ~ } - -  (ce-x'2)~T(x')dx" (13) 

The quantities R+ (x, y), R_ (x, y), 0+ (x, y) and 0_ (x, y) are given by 

R + e i~ = [c 2 - {x + i [d___ (d a - 4) ~3 (2y/2) } 2] ~. (14) 

A cut is introduced in the x, y-plane extending along the x-axis between the branch points 
x = _+ c. Branches of the square root function are determined by choosing 0 + to be zero for 
[xl < c, y = 0 +  and defining it by analytic continuation elsewhere. The Plemelj formulae 
immediately show from equation (123) that limy+ o art (x, y) = 0 and hence the first of the two 
boundary conditions (12) on the crack is indeed satisfied. 

The important features of crack-tip stress distributions can be demonstrated by setting 

x = c + r c o s e ,  y = r s i n  

where r ~ c. From equation (14), the corresponding approximations to R+ and 0+_ are found to 
be 

R+ ~ [2cr {cos 2 ~ + ( d •  2-4)+)2(2/2) 2 sin 2 ~}-~]4, 0+ ,-~ - ( n - q S + ) / 2  (15) 

as r~0 ,  where 

~b_+ = tan -1 { [d •  2 - 4 )  4] (2/2) tan e} (16) 

with tan -1 (...) being understood to indicate the principal value of the inverse tangent for 
0__< c~ < re/2 and rc plus the principal value for re/2_<_ ~ < re. Substituting these into equations (12) 
and (13) and putting 

z~ + = {COS 2 0~ "-~ [d + ( d  2 - 4 ) ~ ]  2 () . /2)  2 sin 2 ~}�88 (17) 

we obtain 
{ d-(d2-4) ~ } K  ax, (r, c~) --~ 1 d + ( d  2 - 4) -~ cos (q~ +/2) - -  cos (qS_/2) -r  

2 ( d  e - 4) ~ d + A _ r ~- ' 

axx(r, ~) ~ 2 { d(d 2 ~ 3~ @ ( d  2 ~ 1)(d2-4) -~ 
( d2 - 4) -~ [T~( (d~-4 )q  A 7 sin (~ +/2) 

- d(d2- 3 ) + ( d 2 -  1)(d2-4)= sin (q~_/2) - -  
[ d -  (d 2 - 4) ~] A _ r ~ '  

1 ~ sin (~b+/2) sin(~_/2)~ K 
ayy(r,~) 2(d2_4)_~ ( ~++ A_ J r  ~" (18) 

as r- ,0,  with 

1 f c (c+x'~ ~ 
K -  zc(2c) + _~ \ c - x ' )  T(x')dx' (19) 

The radial shear stress component, a~, is perhaps the most physically important and it follows 
from equations (18) that this is given by 

~,.~(r, c~) 1 [{(1 )~{d(de-3)+(d2-1)(d2-4)~})sin(~)+/2) 
2 (d e - 4) ~ 2 + ~ 4 ~  -/ A + 

(1 2{d(d2-3)-(d2-1)(dZ-4)~}]sin(~b_/2)~sin2 ~ 
- + a- Y-a? 7 57 

+ { [d+(d2-4)'] c~ +/2) [d-(d2-4)+] c~ + A_ cos 2~.]Kr ~ (20) 
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as r~0 .  
It is interesting to observe at this stage that the stress components near the end x-= c of this 

mode II crack are dependent upon the surface traction T(x) only through the factor K defined 
by equation (19). The subsequent analyses of sections 4 and 5 show that the same observation 
can be made for either a mode I or mode III crack. K, in fact, is simply the corresponding stress 
intensity factor at the tip x = c of a stationary or moving crack in an isotropic material. We note 
that on the x-axis ahead of the crack (~ = 0) the stress components have the behaviour 

0)  ~ K/r  , O) ~ 0 

as r ~ 0 ,  which is clearly independent of the anisotropy of the properties of the medium. 
The approximate variation of ar~ with the angle e for a fixed value o f t  for any orthotropically 

symmetric crystal for which C > 0 can be investigated by substituting the appropriate values 
of 2 and d into the expression (20). Recalling the substitutions mentioned at the end of section 2, 
the values of 2 and d for various hexagonal and cubic crystals have been calculated using the 
data of Huntingdon [20] and Chou [14]. In fact it is found that for many of these 2 and d 
have values which are close to those of an isotropic material (2-- 1, d = 2) and the results are 
correspondingly similar. However, for graphite (2=2.81, d=6.69), for example, the results 
have the significantly different property of the maximum stress occurring in a non-forward 
direction (i.e. off the x-axis). This property occurs for any crystals with values of 2 and d large 
compared to those of an isotropic material. Typically, Figure 1 (i) illustrates the distribution 
of the scaled stress component, r ~ ar~/K, around the tip x = c, of a crack in graphite and for the 
case 2 = 1.5, d = 2.5. For comparison, the corresponding curve for an isotropic material is also 
depicted. (This curve is graphically indistinguishable from that of cobalt (2 =-0.96, d = 2.32) and 
magnesium (2=0.992, d=2.124), for example). 

The approximate expression for a~ for an isotropic medium does not appear to have been 
presented explicitly elsewhere. It can be deduced by taking the limit as d-~2 and 2--, 1 in the 
approximation (20) but alternatively, and perhaps more conveniently, the results of Lardner 
[6, section 5.2] also yield 

a,.~ ~ sin ~ sin ~ + cos 

as r ~ 0 ,  for an isotropic material. The main conclusion which can be drawn therefore is that, 
in contrast to the isotropic case, the stress component a,.~ in a strongly anisotropically ortho- 
tropic crystal has a maximum in a non-forward direction. 

We can also calculate the tangential stress component a~  = axx sin z c~ + ayy cos 2 ~ -  axy sin 2c~ 
in the neighbourhood of the crack tip using the asymptotic forms of the stresses in equations 
(18). The angular variation of r ~ a ~ / K  around the tip x =  c is illustrated in Figure 1 (ii) for a 
range of values of 2 and d. The curve (a) exhibits the well-known property that in an isotropic 
material a~  has a maximum at about - 70 ~ It is often concluded that a crack in a brittle mate- 
rial subject to shear forces will grow in a tensile mode at an angle of - 70 ~ to its initial direction. 
As the strength of anisotropy increases, it is found that the maximum in a~  becomes sharper 
and also moves round towards an angle of - 9 0  ~ with the crack. 

Similiar properties to the above were found and discussed for the corresponding components 
a,.~ and a~  in the situation studied by Lardner and Tupholme [9]. 

4. Normally loaded crack 

The analysis of this section is presented rather more briefly than that of section 3 as the under- 
lying techniques are very similar. The mode I crack discussed here can again be represented 
by a distribution of edge dislocations. To satisfy the boundary conditions (11) it is clearly 
necessary to make use of dislocations whose Burgers vectors are in the y-direction. 

If we assume that the appropriate displacement discontinuity across the plane y-- 0 is given 
by 
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uI(x, 0 + ) - u ' ( x ,  0 - )  = (0, b, 0) for x > 0 ,  

the corresponding stress field of such a dislocation situated at the origin has components (see 
[13]) given by 

bK. ,~2 y x 2 _ .,]2 y2 

a~y(x, y ) -  2n ( x2 -22y2)2  + d 2 2 2 x 2 y  2" 

bK,  2 2 x x 2 _ 22 y2 

a~(x,  y ) =  2rc (x2_ 22y2) 2 + d Z 2 2 x 2 y  2 (21) 

bK,  x x2 +(C  + 3)22y 2 
2re ( x 2 - 2 2 y Z ) + d Z / ] , 2 x Z y  2 aTyy (x, y) - 

where  

K .  = Kr (c22/c 1 ~)4. (22) 

From equation (213) we see that aIy(x, 0) is given by the right-hand side of equation (5) with 
Ke replaced by - K ,  and equation (7) therefore shows that the mode I crack can be replaced 
by a distribution of climb edge dislocations with density function f ( x )  given by 

2 1 (c (c2_ x,2), 
f ( x )  = - lrbK, (c 2 -x2 )  + - -c x ' - x  T(x')dx '  . 

As is the previous section, the corresponding expressions for the stress components of the 
mode I crack, which can be calculated from the formula 

% ( x ,  y)  = ~ " a o ( x -  x , y ) f ( x" )  d x " ,  
- - r  

depend upon whether the constant C is positive or negative. Restricting our attention to cases 
for which C > 0, we find using the results (A.3) and (A.4) that : 

�9 i 
o-~,(x, y) = 2{Y+ (0+ - n / 2 ) - @ _  (0_ -~z/2)}, 

a~(x ,  y) { [ d + ( d 2 - 4 ) * ] ~ + ( O + ) - [ d - ( d a - 4 ) * ] ~ _ ( O _ ) }  , (23) 

ay , (x , y )  - 1 { [ d - ( d 2 - 4 ) * ] ~ + ( O + ) - [ d + ( d 2 - 4 ) * ] ~ _ ( O _ ) } ,  

where ~-_+ (0+), R e and 0_+ are given by equations (13) and (14). This solution does indeed solve 
the problem for the mode I crack since the second of the boundary conditions (11) is satisfied 
by the expression (231) for axy. 

Using the approximations (15) and (16) near the crack tip and the definitions (17) and (19) of 
A _+ and K, respectively, it follows that 

2 { sin (~b +/2) sin (~_/2)~ K 
axy (r, e) --~ (d 2 _ 4)* A + A _ J r ~ '  

{ ~ d - ( d 2 - 4 )  + } K  22 d + (d 2 - 4) ~ cos (~b +/2) cos (qS_/2) (24) 
a~(r,  ct) ~ 2(d2_4)~ A+ A_ 

1 ~ d -  (d2-  4) * d+(d2-4 )*  cos (q5_/2)} K 
r ~) ,-~ -- 2(d2 4), { A+ cos(~b+/2) A_ r ~ 

as r~0 .  The corresponding tangential stress component o-~ can easily be calculated from the 
formula a~  = a ~  sin 2 ~ + ayy cos 2 ~ -  a~, sin 2c~ and it is found to exhibit the same principle 
factors as G~ in the shear case. In particular, a non-forward maximum develops as 2 and d 
increase. Again, as r--,0 the components a~r(r, 0) and oyy(r, 0) do not depend upon the elastic 
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C~ 

I I 
0 rr rr 

a 2 
Figure 2. Distribution of the stress component ~ around the tip of a mode I crack for (a) isotropic material, (b) 2 = 1.5, 
d=2.5, (c) 2=2.81, d=6.69 (graphite). 

cons tants  of  the material .  F igure  2 illustrates the var ia t ion  of the scaled stress componen t ,  
r ~ G~/K,  a r o u n d  the crack  tip for graphi te  (2 = 2.81, d = 6.69) and  the case 2 = 1.5, d = 2.5. F o r  
an isotropic  mater ia l  

( e 1 2 ) K  G~ "~ cos ~ - ~ sin e sin r-  ~ 

as r ~ 0  and the curve represent ing this is also shown. 

5. Antiplane shear crack 

A m o d e  I I I  crack can be replaced by  a d is t r ibut ion of  screw dislocat ions with densi ty funct ion 
f ( x )  whose  d isp lacement  discontinuit ies are given by  

IlIII(x, 0q-)--I lIII(x,  0 - - )  = (0, 0, - b )  for x > 0 .  

F o r  a screw dis locat ion of this type si tuated at the origin, the stress field has  non-zero  c o m p o -  
nents  [-13] given by  

b K  s 17 2 y 111 / 
ff xz ~X, y)  --  

2n x 2 +~l ~ y2, (25) 

b K  s x 11I / 
ay~ Ix, y) = 2n X2 -k t12 y 2 

where 

Ks = (c~4css) -~ , t/2 = (c55/c44) ~ �9 (26) 
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By comparing the right-hand side of equation (5) with 

m, O) - bK~ 1 
cry~ tx, 2re x ' 

the analysis (with Ke replaced by K~) leading to equation (7) is seen to be applicable to show that 

2 1 ~-c (C2 X,2)~- 
f ( x )  - 7rbK~ (C2-~X2) zt J_< x ' - x  T(x ' )dx '  

Define quantities g (0), R (x, y) and 0 (x, y) by 

1 f ~ qy cos O + ( x - x ' ) s i n  0 
g(O) = ~ -~ R { ( x _ x , ) z + t l z y 2 }  

R e i0 = {c 2 - -  ( x -k  #/y)2}+ 

(c r(x')dx' ,  

(27) 

with 0 chosen to be zero on y = 0 + for ix[< c and continued analytically elsewhere. It then 
follows, from the formula 

~Tij(x, Y) = % t x -  x , y ) f ( x " ) d x " ,  J -  
c 

that for all 

a=(x, y) = - qg ( 0 -  ~/2) ,[ 
(28) t "  

y) e(0). 
From these expressions, we find that near the crack tip 

(29) 
, , cos(qS/2) K 

as r~01 where K is defined by equation (19) and 

A = (cos 2 ~ + ~/2 sin 2 c@ 
(3O) 

q5 tan-1 (r/tan ~). 

Clearly, the anisotropy of the material again does not affect a=  (r, 0) or ar~ (r, 0) near the crack 
tip. 

Equations (29) yield an expression for the stress component o-= near the crack tip of the form 

a~z(r, ~) .,~ {t/sin (qS/2)sin ~+cos  ( q ~ / 2 ) C O S A  cz} K (31) 

as r~0 .  The component G= develops a non-forward maximum as the value oft/increases. The 
critical value at which this first occurs is ~ ~ 1.41. Figure 3 shows graphically the variation with 

of the scaled stress component r ~ a = / K  around the crack tip x = c for graphite (t/= 1.36) using 
the data [14, 201. For an isotropic material it is found, by letting t /~  1 in equation (31), that 

cos 

as r--+0. The curves representing this and the cases 1/=2.5, r/=4 are also included in Figure 3 
for comparison. 
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0.6 r f 
0 rr YE_ 

4 2 
Figure 3. Distribution on the stress component a,= around the tip of a mode III crack for (a) isotropic material, (b) 
~/= 1.36 (graphite), (c) q=2.5, (d) ~/=4.0. 

6.  E l a s t o p l a s t i c  c r a c k  

The BCS model [-21] proposes that the plastic zones of a mode II crack with plastic flow at its 
tips can be considered as a planar distribution of dislocations extending over the regions 
c < ix] < a. (These plastic zones are symmetrical about  x = 0 provided we assume that the 
surface traction T(x) is an even function of x for ix[ < c.) Suppose that within these regions 
axy(x, 0 ) = - o "  1, the constant yield stress of the material. 

Since axy(x, 0) is required to have no singularities at the tips x =  _+a of the two plastic 
zones, the stress intensity factor there, obtainable by comparison with equation (19), must 
vanish. It follows that 

f dx' f c T(x')dx' O" 1 = 
( a 2 - x ' 2 ?  - c  + " 

This result determines the length ( a - c )  of the plastic regions and is identical to that cor- 
responding to an isotropic material. F rom equation (7), the density of dislocations in the region 
Ix] < a can be deduced to be 

2 1 { fC (a2--x'2) k f (a2-x'2)~ } 
f (x)  nbKe ( - ) -c x ' - x  c<l~'l<a x ' - a2 -x2 ~ T (x ' )dx ' -a l  x ' -  dx' 

which is simply that of the isotropic case multiplied by a factor i~/Ke(1 -v ) ,  I~ and v being the 
shear modulus and Poisson's ratio, respectively, of the isotropic solid in its reference state. 

II I1 The ratio ~o/@ i of the plastic displacement at the tip of the crack (S~ bf(x)dx) in the o r tho t rop ic  
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crystal to that in an isotropic material is therefore given by 

~pI1/r O/'*'i = #/Ke(1- V). 
If the same model is applied to mode I and III elastoplastic cracks, it is found that, in a self- 
explanatory notation, 

1 I �9 o/~i = ~ /K~ v), 
~III/t-fiIll 

0 /'*'i = #~Ks 
and the lengths of the plastic zones are again unaffected. 

Appendix I 

For the inplane shear crack (see section 3) in orthotropic crystals for which d 2 -  4 < 0, the 
components of the stress field are found to be as follows: 

~ .  (x, y) = - ~ { ~  (0 + ) -  ~r (0_) },  

2 

1 {~?)(0+)_  ~(_3)(0_) } ~,,(~, y) = _ 

(A.1) 

where the functions fq~)(0+) and fig)(0_) for p =  1, 2, 3 are given by 

1 fc {x-x~+-(4-d2)~(2y/2)}{dc~s~•189 ' 
aJ(~l(O • = ~ -~ R+ {[x- x' ++_(2y/2)(4--d')~]e + (ady/2) z} 

1 (~ {x-x'+-(4-d=)§177177177177 x~a)~T(x')d x, 
~1(0• = ~ j _ ~  R• {[x- x'++-(2Y/2)(4-d2)�89 +()dY/2):} ' 

1 f ~ {x-x'+-(4-dZ)�89176 (A.2) 
ff21(O• = ~ -, R•189 2} 

with 

R_+ e ~~ = [c 2 - {x + ( 4 -  d2) + (23,/2)+ i2dy/2} 2]~. 

If required, the approximations for the stress components near the crack tip can be calculated 
by a technique corresponding to that used in section 3. 

Appendix II 

Using contour integration it can be shown that 

f c dx" 
-c ( c2 -- x"2) ~ (x'-- x"){ (x-- x " y  + :~z y2} 

j c ( x -  x")dx" 
-c ( C2 --Xtt2) � 89  { ( X - -  Xt') 2 ~- ~ 2 y 2 }  

for constant o~ff, where 

e i~ = {c 2 --(x + i5Cy)2} 5 

with the branches chosen in the same way as those of R + e I~ in section 3. 

= re{iCy sin O-(x -x ' )  cos O} 
yff{~ {(x - x') 2 -i- if{.2 y2} 

= rc{~y  cos O+(x-x') sin o}  
{ ( x - x ' ) 2 + y 2 / }  

(A.3) 

(A.4) 
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